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The large gains in computational capability which are required in the future 
by problems in computational quantum chemistry must come from advances 
in both parallel architectures and algorithms. The relation between algorithms 
and architecture is discussed, with examples of non-numerical algorithms for 
which future architectures should facilitate implementation. The use of time- 
space complexity trade-offs is discussed. A parallel language extension and 
architecture targeted towards general numerical and nonnumerical algorithms 
being developed by Myrias Research Corporation is briefly presented. 
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I. Introduction 

Many scientific researchers estimate that available computing power must increase 
by about 4 to 6 orders of  magnitude, with an associated increase of primary 
memory size by about 3 orders of magnitude, in order to model systems of present 
practical interest [1, 2]. In order to perform a self-consistent-field (SCF) Hartree- 
Fock calculation on a biological molecule such as a protein with 103 atoms, using 
a minimal basis set, an increase in speed of at least 10 6 would be required 
(assuming the O(1/4) growth in the number of integral evaluations [3] is truncated 
by the vanishing of integrals involving basis sets whose centres are more than 20 
angstroms apart). To achieve results of a reliable nature, significantly larger 
increases in speed would be required. However, it is estimated that current 
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supercomputers (pipelined vector machine architectures) are within an order of 
magnitude of their maximum achievable speed [4]. 

\ 

Judging from experiences with architectures which have similar synchronization 
barriers [5, 6], further increases of speed through multi-tasking on several vector 
machines is likely to give at most another factor of 10 increase in speed, at the 
expense of propagating hardware restrictions into the user programming model. 
In order to meet the future demands of scientific researchers, a scalable, program- 
mable, parallel architecture is required. Scalable is taken to mean that there is 
no a priori limit on the configuration size (number of processing elements), and 
that performance varies almost linearly with size (provided the problem size is 
increased in proportion to the configuration size). The memory size must also 
scale with the configuration size. Programmable is taken to mean that the user 
has a simple mechanism for expressing the parallelism in his problem. The 
mechanism must be independent of the configuration size as well as the technology 
used in implementation. The mechanism must not require the user to be aware 
of the physical location of parallel tasks or their memory spaces. Further desirable 
design goals are discussed in [7]. 

Numerous parallel processors have been, or are being, constructed in an attempt 
to satisfy the projected needs of the scientific user. However, most parallel 
processing projects have involved the design of a hardware architecture, followed 
by attempts to design algorithms which will efficiently map a solution methodology 
for a given problem onto the hardware architecture. Besides propagating hardware 
restrictions into the user programming model, resulting in a non-programmable 
architecture [8], this approach neglects the other major factor involved in sig- 
nificantly decreasing the real time it takes to obtain a solution to a given problem, 
namely, the use of optimal, or near-optimal algorithms. For example, suppose 
the size of a given problem is measured by N (N may be the order of a matrix, 
or the number of basis elements, etc.). A machine which is 100 times faster, but 
must run an O(N 2) algorithm instead of an O ( N  * log N) algorithm to achieve 
this speed-up, will take a longer time to solve the problem if N > 1001, assuming 
the coefficients are identical. 

Algorithm development can have as large an impact on improved performance 
as new architecture designs. For this reason, it is important that the synergistic 
relation between algorithms and architectures be well understood, both by the 
architect and the user developing the algorithms. 

In the next section, the relationship between algorithms and architecture is 
discussed. The last section presents an architectural approach designed to achieve 
a scalable, programmable architecture which would enable the implementation 
in a natural, intuitive manner, of algorithms discussed in Sect. 2. Historically, 
the computational complexity of performing SCF calculations on biological 
molecules were major influences behind the architectural (language) approach 
of Sect. 3, and the formation of Myrias Research Corporation to produce an 
implementation. 
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2. Algorithms and architectures 

An architecture is usually designed to suit the perceived needs of a particular 
class of algorithms. Typical classes of algorithms include signal and image 
processing, matrix operations, and artificial intelligence. Architectures for signal 
processing have tended towards large numbers of small bit-slice processors 
connected in a regular pattern, such as special purpose fast Fourier transform 
devices and the Goodyear  Massively Parallel Processor (MPP). Architectures for 
performing fast matrix operations tend to be pipelined vector processors such as 
those produced by Cray, CDC, Fujitsu, Hitachi, and Floating Point Systems. 
Artificial intelligence oriented architectures are still in their infancy. 

Architectures targeted towards scientific computation are currently predominately 
pipelined vector processors. However, as will be seen, optimal algorithms for 
scientific computation are much more diverse than matrix operations, and in fact 
many are more combinatorial or symbol oriented than numerical. In fact, even 
some matrix operations, such as those involving sparse matrices, are not well 
suited to vector architectures [9]. 

On the other hand, the architecture available to users has a large impact on the 
algorithms they develop to solve their problems. In fact, the available architectures 
tend to channel the thought processes which occur in the search for solutions. 
The channeling process is undoubtedly deeply connected with the relationship 
between the human thought process and language. To see the connection, consider 
the following argument. 

From a user's viewpoint, an architecture is basically a formal language and a 
performance model, where the performance model indicates which syntactic 
constructs in the language are efficient. For example, a vector construct is much 
more efficient on a pipelined vector processor than a scalar construct is. Further- 
more, the efficiency of a vector construct varies with the vector length, with the 
exact variation depending on the pipeline length of a particular architecture [10]. 
The user of a pipelined vector processor even has the choice between assembler 
language constructs which implicitly contain detailed information about the 
hardware, and higher level constructs such as Fortran with additional vector 
constructs which save the user the detail at the cost of sacrificing some efficiency. 

Linguists have long been aware of the channeling effect of natural language on 
the human thought process [11]. To some extent, the channeling effect can be 
observed through the process of translation, the expression of a concept which 
arose within one language culture in a second, distinct language culture. In a 
sense, the difficulty of the translation process for a concept is related to the 
probability that the concept would arise in the second language, without introduc- 
tion from another language. The more difficultthe translation, the less likely the 
concept would arise naturally. An extreme example is the transfer into English 
of Chinese philosophical concepts, which is regarded by Some as "probably the 
most complex type of event yet produced in the evolution of the cosmos"[12]. 

The formal languages and performance models which form the user's model of 
various computer architectures have much more precision than occurs in natural 
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languages. However, the channeling process and difficulties in translation are 
readily evident. For example, a user working with a language (and architecture) 
which does not support recursive data structures or recursive procedures is not 
likely tO think of recursive solutions to his problems. And even if he does, it may 
be too difficult to translate into his available architecture, or too inefficient if the 
translation is possible. 

The importance of optimal or near-optimal algorithms should not be overlooked 
in the design process of a new architecture, as decreasing the real time for problem 
solutions by many orders of magnitude requires not only a much faster architec- 
ture, but an architecture which tends to channel users toward optimal algorithms. 
Although it is always dangerous to predict the future, it is instructive to investigate 
the general shape of algorithms and solution methodologies which may play an 
important role in the future of computational chemistry. 

Artificial intelligence algorithms are finding roles in a number of areas. One 
example is the use of a problem-state language approach in determining an 
ordered set of chemical structure descriptions from mass spectra and other 
experimental data [13]. Other examples include the use of combinatorial and 
graph algorithms for calculating ligand binding [14], discriminating isomeric 
structures [15], performing similarity searches and structure-activity Correlations 
[16], detecting near equivalence of major substructures in a molecule [17], and 
drug design [18]. 

Another interesting example is the use of tree pruning algorithms to select the 
most important vibrational-rotational states of a molecule for studying its multi- 
photon dynamics in a laser field [19]. The computational complexity is consider- 
ably reduced from the problem of diagonalizing a large matrix of order 7690 to 
a matrix of order 400. This was done by a careful state selection performed by 
a branch-and-bound-search, using as the cost of the path between two states a 
measure which depends on IEi- Ejl- by, where Ei is the energy of state i, and v 
is the frequency of the laser. 

The computational complexity of molecular dynamics calculations can be con- 
siderably reduced by using sorting and searching algorithms to construct and 
manipulate neighbour lists [20, 21, 22]. The neighbour lists enable the introduction 
of a number of different time steps, with only interactions between near neighbours 
being calculated for the smallest time steps and all possible interactions being 
calculated only for the largest time steps. This is a good example of the use of 
a time-space complexity trade-off. The decrease in time complexity (measured 
by the number of operations required to advance a given time interval) is bought 
at the expense of an increase in the space complexity (the storage, or memory 
required for the neighbour lists). 

It is instructive to look at the efforts being made in other fields to find optimal 
or near-optimal algorithms for solving partial differential equations. Using 
methods to decrease the computational complexity of performing the matrix 
operations which arise is a useful direction, and considerable work has been 
expended in this area [23]. However, there are a number of techniques being 



A parallel architecture and programming language 143 

developed for the solution of partial differential equations which have an affect 
on the running order of programs at a more global level, dramatically decreasing 
the number of operations required by effectively decreasing the order of the 
matrices. 

Let D f = g  be a differential equation, where D is a differential operator from 
one type of function space into another. For example, the function spaces are 
often L p, Sobolev or Hilbert spaces (and thus infinite dimensional). There are 
two basic methods for discretizing the differential equation which we will consider. 
(Another method, asymptotic ray tracing [24], is used predominantly in seismic 
work). The first, the finite difference (FD) method, discretizes the tirne-space 
continuum into a time-space grid, turning the differential operator D into a 
difference operator. The second, the finite element (FE) method, discretizes the 
(infinite dimensional) function spaces by approximating them with a finite 
dimensional subspace [25]. Although FD methods have been used in quantum 
chemistry [26], the vast majority of ab initio methods, such as Hartree-Fock and 
configuration interaction, are FE methods [27]. 

The main idea behind attempts to find near-optimal algorithms for the FD and 
FE methods is to use as much knowledge of the physics as possible in the 
discretization process, thereby reducing the computational complexity. For 
example, in FD methods (and FE methods using meshes) the time-space grid 
can be made spatially non-uniform and dynamic [28-31]. Grid spacings in both 
the time and space directions are made small in regions where the physics is 
complicated, such as boundaries, transition regions, shock waves, etc. Moreover, 
the grid is dynamically adapted as these regions move. 

A rough estimate of the change in computational complexity due to the use of 
such adaptive methods can be obtained as follows. Suppose the problem consists 
of modelling a 3-dimensional cube of length 1 and which contains a small number 
of 2-dimensional shock fronts. Let e be the smallest grid spacing required in 
order to advance the solution another time step with a given accuracy. Then, if 
N = I/e, the number of operations required using a uniform grid is proportional 
to N 3, or the number of grid points. If an adaptive grid is used, however, the 
number of grid points will be N (2+d), where 0 < d < 1 with d depending on the 
exact method and the physics. Note that adapting a grid has the ftavour of a 
divide-and-conquer algorithm. Namely: for each point of a grid at a given level, 
if the physics in the region of that point can be modelled accurately enough with 
the present spacing, then nothing more need be done. Otherwise, the region of 
the grid point must be subdivided into a finer grid, whose level is one deeper [32]. 

In FE methods, the dominant method, except in quantum chemistry, for choosing 
the finite dimensional subspace is to subdivide the spatial region into a mesh 
and select a number of polynomials which have compact support on the different 
elements of the mesh as the basis set [25]. Introducing knowledge of the physics 
in order to reduce the computational complexity is then done as described above 
for the FD method. This method has a number of difficulties, such as introducing 
anisotropic effects into the propagation of waves, which could possibly be avoided 
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through the use of a more physical choice of basis sets. There is a good historical 
reason for the solution being channeled towards the mesh approach. By choosing 
polynomials which have compact supl~ort on the mesh elements, the integrals 
which arise in the FE method are often made less computationally complex. In 
cases where the integral evaluations are done by numerical quadrature, and are 
computationally expensive, a slightly modified approach has proven useful [33]. 
The desired integrals are expressed as linear combinations of basic integrals, 
which are reduced in number by group theoretic techniques. A computer system 
for algebraic manipulation is then used to compute expressions for the basic 
integrals, which are linear combinations of 20 to 26 terms, in this case. These are 
then programmed by hand. 

In SCF calculations, the situation is slightly different. State selection [34], or the 
desirability of decreasing the basis size n in order to decrease both the number 
of integrals which must be evaluated (O(n4)) and the matrix operations required 
(about O(n3)) is still paramount. However, the_atoms give positions for the 
centres of the basis sets (no arbitrary meshes). 

3. The myrias PAR D O  memory model 

The architectural design methodology [8] used by Myrias consisted of doing a 
detailed analysis of target applications, including possible future algorithms, as 
above, as well as current algorithms in use. The parallel structure of the algorithms 
was studied, and a simple but expressive language construct was designed to 
enable the natural expression of the parallel structures. The language then drove 
the system architecture design, with the goal of an efficient, cost-effective 
implementation of a parallel processor which supports that language construct [7]. 

Any parallel programming language should meet a number of design criteria. 
The design criteria used by Myrias are the following: 

The language must imply a simple, intuitive programming model which is close 
to the cultural expectations of present programmers, scientists, engineers and 
other users. There should be a simple physical model for the data flow implied 
by the language. 

The programming model must be independent of the number of processors. 

The language must be very expressive, allowing a natural expression of algorithms 
used in physical modelling, signal processing, combinatorial problems and other 
cycle-intensive computing tasks. 

The conversion costs of present serial programs and algorithms should be 
minimized. 

The parallel construct should be easily grafted onto present serial languages 
which are used for cycle-intensive problems, such as Fortran and C. 

The language construct should allow an efficient implementation with a low 
performance spread. 
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An implementation of a high level failure recovery mechanism must be enabled 
by the language. Otherwise the large number of components in a large configur- 
ation would limit the mean time between failure too severely. 

The result of the language design done by MyNas is the PAR DO construct and 
its associated memory semantics. Eliminating global memory semantics eliminates 
many problems, both in the programming model (synchronization semantics.) 
and in the implementation architecture. The Myrias 4000 system provides the 
support required for the memory model, including automatic task scheduling 
and virtual memory management. 

The mechanism for expressing the parallelism in a computational problem is 
done via a language extension, the parallel DO, or PAR DO. The PAR DO 
memory extension is compatible with many serial programming languages, and 
has presently been added to C and Fortran 77, producing Myrias Parallel C 
(MPC) and Myrias Parallel Fortran (MPF). MPF has two additional extensions 
to increase its power, namely, recursion and dynamic array allocation. 

The following is a short description of the user-level model of the PAR DO 
construct. It is not meant to be a precise language definition, nor is any attempt 
made to demonstrate how the implementation avoids unnecessary work which 
might be implied by this model. 

When the calculations within a DO loop are independent, the user can indicate 
that the calculations can be done in parallel by changing the DO keyword to 
PAR DO. This changes the memory semantics slightly. Each "iteration" now 
sees the machine state as it was at the beginning of the PAR DO instead of as 
it was at the end of the previous "iteration". Conceptually, this initial machine 
state is a parent to many child tasks or loop "iterations". The child tasks may 
be completely heterogeneous and, conceptually, are done in parallel. Of course, 
the amount of actual parallelism is restricted by the number of processors 
available. The mapping of parallel tasks onto available processors is performed 
automatically by the control firmware, using a sophisticated resource allocation 
mechanism. 

At the end of a PAR DO, all child tasks are merged into one machine state using 
the following rules: 

If  no task assigns to a variable (or memory location), then the variable is 
unchanged. 

If one task assigns to a variable, the variable is changed to the assigned value. 

If  more than one task assigns to a variable, but the values assigned are identical, 
then the variable is changed to the assigned value. 

Otherwise, the value of the variable is undefined. If  several tasks assign different 
values to a variable, there is no natural way to choose which value it should have 
after merging, and in fact, it might not have any of the assigned values. 
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Note that there is no communication between sibling tasks. Also, a variable within 
a PAR DO whose value is undefined at the end of the PAR DO has the behaviour 
of a local variable. 

Intuitively, a PAR DO has the flavour of computing a next state from a previous 
state. For some, the PAR DO memory model is more natural and intuitive than 
the serial DO model. For example, consider the effect of the two expressions 
A(I) = A( I+ 1) and A(I )= A ( I -  1) when they occur inside a loop construct. If 
the construct is a PAR DO, the action is symmetric, causing a left (right) shift 
respectively. If the construct is a serial DO, the first causes a left shift while the 
second copies the value of the first element into all the other array positions. 

PAR DO's can be combined with recursion. For example, a dot product of two 
vectors can be done by dividng the two vectors in half, recursing, and summing 
the resultant dot products. This reduces round-off errors since an operand is 
involved in only O(log n) additions instead of O(n).  Recursion is also the most 
convenient method for handling combinatorial problems. Parallel recursion 
enables a limited simulation of nondeterministic calculations to be performed. 

There are no restrictions on the number of "iterations" in a PAR DO, nor on 
the depth of nesting of PAR DO's and recursive subroutines. There is no need 
to worry about parallel tasks having different amounts of work to perform or 
different memory requirements. Causal restrictions are handled without requiring 
any complicated synchronization semantics. The recursive parallel method (RPM) 
of programming made possible by MPF subsumes all vector, parallel, and tree- 
machine architectures. All divide and conquer algorithms are easily expressed 
using the RPM. 

The PAR DO construct gives the user access to parallel processing in a form 
which is intuitive and easy to use. The author is not aware of any calculations 
in computational chemistry which cannot be programmed in a natural way with 
the PAR DO construct. The calculation of integrals is a good example of a large 
number of parallel, but heterogeneous tasks. A similar comment can be made 
regarding the creation of integral subroutines by the method discussed in Sect. 
2. Some programming examples are given in [7], including game tree searches 
(related to tree pruning) and sorting. 

The Myrias 4000 system has a multilayered architecture [32]. The layers are 
labeled as follows: hardware, control firmware, operating software, and program- 
ming languages in which application codes are written. 

The major technological innovations that made an implementation of MPF 
possible lie in the control firmware. The main goals for the control firmware were 
to efficiently and effectively harness the computing power of thousands of low-cost 
microprocessors, provide detection of and automatic recovery from all system 
failures, and to accept and run MPF programs 

The M4000 control firmware is totally distributed to eliminate performance 
bottlenecks. Virtual memory management, process management, and resource 
management are all distributed via a kernel which resides in every processing 
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e lement  o f  a conf igurat ion.  C o m m u n i c a t i o n  is done  th rough  messages  and  page  
transfers .  The cont ro l  f i rmware  op t imizer  col lects  pe r fo rmance  in fo rma t ion  and  

adjusts  system tuning  parameters .  

Advan tage  is t aken  o f  the  loca l i ty  o f  reference  which  occurs  in p rog rams  wri t ten 
for  vi r tual  m e m o r y  machines .  The ha rdware  is o rgan ized  as a h ie ra rchy  o f  clusters 
in a f racta l  i n t e rconnec t ion  scheme.  Each  cluster  is c o m p o s e d  o f  smaller ,  self- 
s imi lar  clusters.  The smal les t  c luster  is a single p rocess ing  element .  Pages are 
cached  at different  levels o f  the ha rdware  h ierarchy.  

The bas ic  p rocess ing  e l emen t  consists  of  a M o t o r o l a  68000 mic roprocessor ,  512 

Kbytes  memory ,  and  a h igh - speed  interface  to the  board- leve l  bus.  Eight  process-  
ing e lements  and  a service p rocesso r  are c o m b i n e d  on one board .  Sixteen boa rds ,  
a p r in ted  circui t  b a c k p l a n e  (no wi rewrap) ,  arid two c ommun ic a t i on  boa rds  are 
c o m b i n e d  into a cage. Each  commun ica t i on  b o a r d  has 4 c ommun ic a t i on  modu les  
which  are used  to in te rconnec t  the cages. All  buses  and  c ommun ic a t i on  channels  
have more  than  6 M b y t e s / s  nomina l  bandwid th .  

The Myr ias  4000 system is phys ica l ly  p a c k a g e d  in units of  1024 processors ,  ca l led  
Krates .  Each  Kra te  has 512 Mbytes  o f  m e m o r y  and  a usable  m e m o r y  b a n d w i d t h  
o f  5000 Mby te s / s .  

Since typ ica l  conf igura t ions  would  consist  o f  4 to 64 Krates ,  enough  m e m o r y  is 
ava i lab le  in the larger  conf igura t ions  for  ex t remely  large in tegra l  da tabases ,  
enab l ing  the use of  t ime-space  complex i ty  tradeoffs.  
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