
Theor Chim Acta (1987) 72:139-148

�9 Springer-Verlag 1987

A parallel architecture and programming language
for quantum chemistry

James R. Savage*

Myrias Research Corporation 10328 81 Avenue, Edmonton, Alberta, Canada T6E 1X2

(Received November 24, revised and accepted December 30, 1986)

The large gains in computational capability which are required in the future
by problems in computational quantum chemistry must come from advances
in both parallel architectures and algorithms. The relation between algorithms
and architecture is discussed, with examples of non-numerical algorithms for
which future architectures should facilitate implementation. The use of time-
space complexity trade-offs is discussed. A parallel language extension and
architecture targeted towards general numerical and nonnumerical algorithms
being developed by Myrias Research Corporation is briefly presented.

Key words: Parallel algorithms--Parallel architectures

I. Introduction

Many scientific researchers estimate that available computing power must increase
by about 4 to 6 orders of magnitude, with an associated increase of primary
memory size by about 3 orders of magnitude, in order to model systems of present
practical interest [1, 2]. In order to perform a self-consistent-field (SCF) Hartree-
Fock calculation on a biological molecule such as a protein with 103 atoms, using
a minimal basis set, an increase in speed of at least 10 6 would be required
(assuming the O(1/4) growth in the number of integral evaluations [3] is truncated
by the vanishing of integrals involving basis sets whose centres are more than 20
angstroms apart). To achieve results of a reliable nature, significantly larger
increases in speed would be required. However, it is estimated that current

* Present address: Chion Corporation, Box 4942, Edmonton, Alberta, Canada T6E 5G8

140 J.R. Savage

supercomputers (pipelined vector machine architectures) are within an order of
magnitude of their maximum achievable speed [4].

\

Judging from experiences with architectures which have similar synchronization
barriers [5, 6], further increases of speed through multi-tasking on several vector
machines is likely to give at most another factor of 10 increase in speed, at the
expense of propagating hardware restrictions into the user programming model.
In order to meet the future demands of scientific researchers, a scalable, program-
mable, parallel architecture is required. Scalable is taken to mean that there is
no a priori limit on the configuration size (number of processing elements), and
that performance varies almost linearly with size (provided the problem size is
increased in proportion to the configuration size). The memory size must also
scale with the configuration size. Programmable is taken to mean that the user
has a simple mechanism for expressing the parallelism in his problem. The
mechanism must be independent of the configuration size as well as the technology
used in implementation. The mechanism must not require the user to be aware
of the physical location of parallel tasks or their memory spaces. Further desirable
design goals are discussed in [7].

Numerous parallel processors have been, or are being, constructed in an attempt
to satisfy the projected needs of the scientific user. However, most parallel
processing projects have involved the design of a hardware architecture, followed
by attempts to design algorithms which will efficiently map a solution methodology
for a given problem onto the hardware architecture. Besides propagating hardware
restrictions into the user programming model, resulting in a non-programmable
architecture [8], this approach neglects the other major factor involved in sig-
nificantly decreasing the real time it takes to obtain a solution to a given problem,
namely, the use of optimal, or near-optimal algorithms. For example, suppose
the size of a given problem is measured by N (N may be the order of a matrix,
or the number of basis elements, etc.). A machine which is 100 times faster, but
must run an O(N 2) algorithm instead of an O (N * log N) algorithm to achieve
this speed-up, will take a longer time to solve the problem if N > 1001, assuming
the coefficients are identical.

Algorithm development can have as large an impact on improved performance
as new architecture designs. For this reason, it is important that the synergistic
relation between algorithms and architectures be well understood, both by the
architect and the user developing the algorithms.

In the next section, the relationship between algorithms and architecture is
discussed. The last section presents an architectural approach designed to achieve
a scalable, programmable architecture which would enable the implementation
in a natural, intuitive manner, of algorithms discussed in Sect. 2. Historically,
the computational complexity of performing SCF calculations on biological
molecules were major influences behind the architectural (language) approach
of Sect. 3, and the formation of Myrias Research Corporation to produce an
implementation.

A parallel architecture and programming language 141

2. Algorithms and architectures

An architecture is usually designed to suit the perceived needs of a particular
class of algorithms. Typical classes of algorithms include signal and image
processing, matrix operations, and artificial intelligence. Architectures for signal
processing have tended towards large numbers of small bit-slice processors
connected in a regular pattern, such as special purpose fast Fourier transform
devices and the Goodyear Massively Parallel Processor (MPP). Architectures for
performing fast matrix operations tend to be pipelined vector processors such as
those produced by Cray, CDC, Fujitsu, Hitachi, and Floating Point Systems.
Artificial intelligence oriented architectures are still in their infancy.

Architectures targeted towards scientific computation are currently predominately
pipelined vector processors. However, as will be seen, optimal algorithms for
scientific computation are much more diverse than matrix operations, and in fact
many are more combinatorial or symbol oriented than numerical. In fact, even
some matrix operations, such as those involving sparse matrices, are not well
suited to vector architectures [9].

On the other hand, the architecture available to users has a large impact on the
algorithms they develop to solve their problems. In fact, the available architectures
tend to channel the thought processes which occur in the search for solutions.
The channeling process is undoubtedly deeply connected with the relationship
between the human thought process and language. To see the connection, consider
the following argument.

From a user's viewpoint, an architecture is basically a formal language and a
performance model, where the performance model indicates which syntactic
constructs in the language are efficient. For example, a vector construct is much
more efficient on a pipelined vector processor than a scalar construct is. Further-
more, the efficiency of a vector construct varies with the vector length, with the
exact variation depending on the pipeline length of a particular architecture [10].
The user of a pipelined vector processor even has the choice between assembler
language constructs which implicitly contain detailed information about the
hardware, and higher level constructs such as Fortran with additional vector
constructs which save the user the detail at the cost of sacrificing some efficiency.

Linguists have long been aware of the channeling effect of natural language on
the human thought process [11]. To some extent, the channeling effect can be
observed through the process of translation, the expression of a concept which
arose within one language culture in a second, distinct language culture. In a
sense, the difficulty of the translation process for a concept is related to the
probability that the concept would arise in the second language, without introduc-
tion from another language. The more difficultthe translation, the less likely the
concept would arise naturally. An extreme example is the transfer into English
of Chinese philosophical concepts, which is regarded by Some as "probably the
most complex type of event yet produced in the evolution of the cosmos"[12].

The formal languages and performance models which form the user's model of
various computer architectures have much more precision than occurs in natural

142 J.R. Savage

languages. However, the channeling process and difficulties in translation are
readily evident. For example, a user working with a language (and architecture)
which does not support recursive data structures or recursive procedures is not
likely tO think of recursive solutions to his problems. And even if he does, it may
be too difficult to translate into his available architecture, or too inefficient if the
translation is possible.

The importance of optimal or near-optimal algorithms should not be overlooked
in the design process of a new architecture, as decreasing the real time for problem
solutions by many orders of magnitude requires not only a much faster architec-
ture, but an architecture which tends to channel users toward optimal algorithms.
Although it is always dangerous to predict the future, it is instructive to investigate
the general shape of algorithms and solution methodologies which may play an
important role in the future of computational chemistry.

Artificial intelligence algorithms are finding roles in a number of areas. One
example is the use of a problem-state language approach in determining an
ordered set of chemical structure descriptions from mass spectra and other
experimental data [13]. Other examples include the use of combinatorial and
graph algorithms for calculating ligand binding [14], discriminating isomeric
structures [15], performing similarity searches and structure-activity Correlations
[16], detecting near equivalence of major substructures in a molecule [17], and
drug design [18].

Another interesting example is the use of tree pruning algorithms to select the
most important vibrational-rotational states of a molecule for studying its multi-
photon dynamics in a laser field [19]. The computational complexity is consider-
ably reduced from the problem of diagonalizing a large matrix of order 7690 to
a matrix of order 400. This was done by a careful state selection performed by
a branch-and-bound-search, using as the cost of the path between two states a
measure which depends on IEi- Ejl- by, where Ei is the energy of state i, and v
is the frequency of the laser.

The computational complexity of molecular dynamics calculations can be con-
siderably reduced by using sorting and searching algorithms to construct and
manipulate neighbour lists [20, 21, 22]. The neighbour lists enable the introduction
of a number of different time steps, with only interactions between near neighbours
being calculated for the smallest time steps and all possible interactions being
calculated only for the largest time steps. This is a good example of the use of
a time-space complexity trade-off. The decrease in time complexity (measured
by the number of operations required to advance a given time interval) is bought
at the expense of an increase in the space complexity (the storage, or memory
required for the neighbour lists).

It is instructive to look at the efforts being made in other fields to find optimal
or near-optimal algorithms for solving partial differential equations. Using
methods to decrease the computational complexity of performing the matrix
operations which arise is a useful direction, and considerable work has been
expended in this area [23]. However, there are a number of techniques being

A parallel architecture and programming language 143

developed for the solution of partial differential equations which have an affect
on the running order of programs at a more global level, dramatically decreasing
the number of operations required by effectively decreasing the order of the
matrices.

Let D f = g be a differential equation, where D is a differential operator from
one type of function space into another. For example, the function spaces are
often L p, Sobolev or Hilbert spaces (and thus infinite dimensional). There are
two basic methods for discretizing the differential equation which we will consider.
(Another method, asymptotic ray tracing [24], is used predominantly in seismic
work). The first, the finite difference (FD) method, discretizes the tirne-space
continuum into a time-space grid, turning the differential operator D into a
difference operator. The second, the finite element (FE) method, discretizes the
(infinite dimensional) function spaces by approximating them with a finite
dimensional subspace [25]. Although FD methods have been used in quantum
chemistry [26], the vast majority of ab initio methods, such as Hartree-Fock and
configuration interaction, are FE methods [27].

The main idea behind attempts to find near-optimal algorithms for the FD and
FE methods is to use as much knowledge of the physics as possible in the
discretization process, thereby reducing the computational complexity. For
example, in FD methods (and FE methods using meshes) the time-space grid
can be made spatially non-uniform and dynamic [28-31]. Grid spacings in both
the time and space directions are made small in regions where the physics is
complicated, such as boundaries, transition regions, shock waves, etc. Moreover,
the grid is dynamically adapted as these regions move.

A rough estimate of the change in computational complexity due to the use of
such adaptive methods can be obtained as follows. Suppose the problem consists
of modelling a 3-dimensional cube of length 1 and which contains a small number
of 2-dimensional shock fronts. Let e be the smallest grid spacing required in
order to advance the solution another time step with a given accuracy. Then, if
N = I/e, the number of operations required using a uniform grid is proportional
to N 3, or the number of grid points. If an adaptive grid is used, however, the
number of grid points will be N (2+d), where 0 < d < 1 with d depending on the
exact method and the physics. Note that adapting a grid has the ftavour of a
divide-and-conquer algorithm. Namely: for each point of a grid at a given level,
if the physics in the region of that point can be modelled accurately enough with
the present spacing, then nothing more need be done. Otherwise, the region of
the grid point must be subdivided into a finer grid, whose level is one deeper [32].

In FE methods, the dominant method, except in quantum chemistry, for choosing
the finite dimensional subspace is to subdivide the spatial region into a mesh
and select a number of polynomials which have compact support on the different
elements of the mesh as the basis set [25]. Introducing knowledge of the physics
in order to reduce the computational complexity is then done as described above
for the FD method. This method has a number of difficulties, such as introducing
anisotropic effects into the propagation of waves, which could possibly be avoided

144 J.R. Savage

through the use of a more physical choice of basis sets. There is a good historical
reason for the solution being channeled towards the mesh approach. By choosing
polynomials which have compact supl~ort on the mesh elements, the integrals
which arise in the FE method are often made less computationally complex. In
cases where the integral evaluations are done by numerical quadrature, and are
computationally expensive, a slightly modified approach has proven useful [33].
The desired integrals are expressed as linear combinations of basic integrals,
which are reduced in number by group theoretic techniques. A computer system
for algebraic manipulation is then used to compute expressions for the basic
integrals, which are linear combinations of 20 to 26 terms, in this case. These are
then programmed by hand.

In SCF calculations, the situation is slightly different. State selection [34], or the
desirability of decreasing the basis size n in order to decrease both the number
of integrals which must be evaluated (O(n4)) and the matrix operations required
(about O(n3)) is still paramount. However, the_atoms give positions for the
centres of the basis sets (no arbitrary meshes).

3. The myrias PAR D O memory model

The architectural design methodology [8] used by Myrias consisted of doing a
detailed analysis of target applications, including possible future algorithms, as
above, as well as current algorithms in use. The parallel structure of the algorithms
was studied, and a simple but expressive language construct was designed to
enable the natural expression of the parallel structures. The language then drove
the system architecture design, with the goal of an efficient, cost-effective
implementation of a parallel processor which supports that language construct [7].

Any parallel programming language should meet a number of design criteria.
The design criteria used by Myrias are the following:

The language must imply a simple, intuitive programming model which is close
to the cultural expectations of present programmers, scientists, engineers and
other users. There should be a simple physical model for the data flow implied
by the language.

The programming model must be independent of the number of processors.

The language must be very expressive, allowing a natural expression of algorithms
used in physical modelling, signal processing, combinatorial problems and other
cycle-intensive computing tasks.

The conversion costs of present serial programs and algorithms should be
minimized.

The parallel construct should be easily grafted onto present serial languages
which are used for cycle-intensive problems, such as Fortran and C.

The language construct should allow an efficient implementation with a low
performance spread.

A parallel architecture and programming language 145

An implementation of a high level failure recovery mechanism must be enabled
by the language. Otherwise the large number of components in a large configur-
ation would limit the mean time between failure too severely.

The result of the language design done by MyNas is the PAR DO construct and
its associated memory semantics. Eliminating global memory semantics eliminates
many problems, both in the programming model (synchronization semantics.)
and in the implementation architecture. The Myrias 4000 system provides the
support required for the memory model, including automatic task scheduling
and virtual memory management.

The mechanism for expressing the parallelism in a computational problem is
done via a language extension, the parallel DO, or PAR DO. The PAR DO
memory extension is compatible with many serial programming languages, and
has presently been added to C and Fortran 77, producing Myrias Parallel C
(MPC) and Myrias Parallel Fortran (MPF). MPF has two additional extensions
to increase its power, namely, recursion and dynamic array allocation.

The following is a short description of the user-level model of the PAR DO
construct. It is not meant to be a precise language definition, nor is any attempt
made to demonstrate how the implementation avoids unnecessary work which
might be implied by this model.

When the calculations within a DO loop are independent, the user can indicate
that the calculations can be done in parallel by changing the DO keyword to
PAR DO. This changes the memory semantics slightly. Each "iteration" now
sees the machine state as it was at the beginning of the PAR DO instead of as
it was at the end of the previous "iteration". Conceptually, this initial machine
state is a parent to many child tasks or loop "iterations". The child tasks may
be completely heterogeneous and, conceptually, are done in parallel. Of course,
the amount of actual parallelism is restricted by the number of processors
available. The mapping of parallel tasks onto available processors is performed
automatically by the control firmware, using a sophisticated resource allocation
mechanism.

At the end of a PAR DO, all child tasks are merged into one machine state using
the following rules:

If no task assigns to a variable (or memory location), then the variable is
unchanged.

If one task assigns to a variable, the variable is changed to the assigned value.

If more than one task assigns to a variable, but the values assigned are identical,
then the variable is changed to the assigned value.

Otherwise, the value of the variable is undefined. If several tasks assign different
values to a variable, there is no natural way to choose which value it should have
after merging, and in fact, it might not have any of the assigned values.

146 J.R. Savage

Note that there is no communication between sibling tasks. Also, a variable within
a PAR DO whose value is undefined at the end of the PAR DO has the behaviour
of a local variable.

Intuitively, a PAR DO has the flavour of computing a next state from a previous
state. For some, the PAR DO memory model is more natural and intuitive than
the serial DO model. For example, consider the effect of the two expressions
A(I) = A(I+ 1) and A(I)= A (I - 1) when they occur inside a loop construct. If
the construct is a PAR DO, the action is symmetric, causing a left (right) shift
respectively. If the construct is a serial DO, the first causes a left shift while the
second copies the value of the first element into all the other array positions.

PAR DO's can be combined with recursion. For example, a dot product of two
vectors can be done by dividng the two vectors in half, recursing, and summing
the resultant dot products. This reduces round-off errors since an operand is
involved in only O(log n) additions instead of O(n). Recursion is also the most
convenient method for handling combinatorial problems. Parallel recursion
enables a limited simulation of nondeterministic calculations to be performed.

There are no restrictions on the number of "iterations" in a PAR DO, nor on
the depth of nesting of PAR DO's and recursive subroutines. There is no need
to worry about parallel tasks having different amounts of work to perform or
different memory requirements. Causal restrictions are handled without requiring
any complicated synchronization semantics. The recursive parallel method (RPM)
of programming made possible by MPF subsumes all vector, parallel, and tree-
machine architectures. All divide and conquer algorithms are easily expressed
using the RPM.

The PAR DO construct gives the user access to parallel processing in a form
which is intuitive and easy to use. The author is not aware of any calculations
in computational chemistry which cannot be programmed in a natural way with
the PAR DO construct. The calculation of integrals is a good example of a large
number of parallel, but heterogeneous tasks. A similar comment can be made
regarding the creation of integral subroutines by the method discussed in Sect.
2. Some programming examples are given in [7], including game tree searches
(related to tree pruning) and sorting.

The Myrias 4000 system has a multilayered architecture [32]. The layers are
labeled as follows: hardware, control firmware, operating software, and program-
ming languages in which application codes are written.

The major technological innovations that made an implementation of MPF
possible lie in the control firmware. The main goals for the control firmware were
to efficiently and effectively harness the computing power of thousands of low-cost
microprocessors, provide detection of and automatic recovery from all system
failures, and to accept and run MPF programs

The M4000 control firmware is totally distributed to eliminate performance
bottlenecks. Virtual memory management, process management, and resource
management are all distributed via a kernel which resides in every processing

A parallel architecture and programming language 147

e lement o f a conf igurat ion. C o m m u n i c a t i o n is done th rough messages and page
transfers . The cont ro l f i rmware op t imizer col lects pe r fo rmance in fo rma t ion and

adjusts system tuning parameters .

Advan tage is t aken o f the loca l i ty o f reference which occurs in p rog rams wri t ten
for vi r tual m e m o r y machines . The ha rdware is o rgan ized as a h ie ra rchy o f clusters
in a f racta l i n t e rconnec t ion scheme. Each cluster is c o m p o s e d o f smaller , self-
s imi lar clusters. The smal les t c luster is a single p rocess ing element . Pages are
cached at different levels o f the ha rdware h ierarchy.

The bas ic p rocess ing e l emen t consists of a M o t o r o l a 68000 mic roprocessor , 512

Kbytes memory , and a h igh - speed interface to the board- leve l bus. Eight process-
ing e lements and a service p rocesso r are c o m b i n e d on one board . Sixteen boa rds ,
a p r in ted circui t b a c k p l a n e (no wi rewrap) , arid two c ommun ic a t i on boa rds are
c o m b i n e d into a cage. Each commun ica t i on b o a r d has 4 c ommun ic a t i on modu les
which are used to in te rconnec t the cages. All buses and c ommun ic a t i on channels
have more than 6 M b y t e s / s nomina l bandwid th .

The Myr ias 4000 system is phys ica l ly p a c k a g e d in units of 1024 processors , ca l led
Krates . Each Kra te has 512 Mbytes o f m e m o r y and a usable m e m o r y b a n d w i d t h
o f 5000 Mby te s / s .

Since typ ica l conf igura t ions would consist o f 4 to 64 Krates , enough m e m o r y is
ava i lab le in the larger conf igura t ions for ex t remely large in tegra l da tabases ,
enab l ing the use of t ime-space complex i ty tradeoffs.

References

1. Winkler KA, Norman ML, Norton JL (1986) On the characteristics of a numerical fluid dynamics
simulator. In: Matsen FA, Tajima J (eds) Supercomputers: algorithms, architectures and scientific
computation. University of Texas Press, Austin, pp 415-429

2. Buzbee BL, Sharp DL (1985) Science 227:591-597
3. Csizmadia IG (1981) Some fundamentals of computational theoretical chemistry. In: Csizmadia

IG, Daudel R (eds) Computational theoretical organic chemistry. Reidel, Dordrecht Boston
London, pp 1-14

4. Buzbee BL (1985) Applications of MIMD machines, In: Duff IS, Reid JK (eds) Vector and
parallel processors in computational science. North-Holland, Amsterdam, pp 1-5

5. Axelrod TS (1986) Parallel Computing 3:129-140
6. Lubeck OM, Frederickson PO, Hiromoto RE, Moore JW (1985) Los Alamos experiences with

the HEP computer. In: Kowalik, Janusz S (eds) MIMD computation: HEP supercomputer and
applications. MIT Press, Cambridge, pp 331-339

7. Savage JR (to appear) Math Comput Simulation
8. Savage JR (1985) Parallel processing as a language design problem. In: Agerwala T, Freiman C

(eds) Proc. 12th Annual International Symposium on Computer Architecture. IEEE, Boston
Mass, pp 221-224

9. Duff IS, Reid JK (1982) Comput Phys Commun 26:293-302
10. Lubeck O, Moore J, Mendez R (1985) Computer 18:10-23
11. Steiner G (1975) After Babel: aspects of language and translation. Oxford University Press, Oxford
12. Richards IA (1953) Towards a theory of translating. In: Wright AF (ed) Studies in Chinese

thought. University of Chicago Press, Chicago, pp 250-278

148 J.R. Savage

13. Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J (1980) Applications of artificial
intelligence for organic chemistry: the Dendral project. McGraw Hill, New York Toronto London

14. Kuhl FS, Crippen GM, Friesen DK (1984) J Comput Chem 5:24-34
15. Raychaudhury C, Ray SK, Ghosh JJ (1984) J Comput Chem 5:581-588
16. Balaban AT, Mekenyan O, Bonchev D (1985) J Comput Chem 6:538-551
17. Bersohn M, Fujiwara, S, Fujiwara Y (1986) J Comput Chem 7:129-139
18. Golender VE, Rozenblit AB (1983) Logical and combinaotrial algorithms for drug design.

Research Studies Press, Letchworth, Hertfordshire, England
19. Chang J, Wyatt RE (1985) Chem Phys Lett 121:307-314
20. van Gunsteren.WF, Berensden HJC, Colonna F, Perahia D, I-Iollenberg JP, Lellouch D (1984)

J Comput Chem 5:272-279
21. Sullivan F, Mountain RD, O'Connel J (1985) J Comput Phys 61:138-153
22. Teleman O, Jonssor~ B (1986) J Comput Chem 7:58-66
23. Pan V (1984) How to multiply matrices faster. Springer, Berlin Heidelberg New York Tokyo
24. Chapman CH, Drummond R (1982) Bull Seismol Soc Am 72:277-317
25. Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice Hall, London
26. Mullally DJ, McIver JW (1983) J Comput Chem 4:552-555
27. Carsky P, Urban, M (1980) Ab initio calculations. Springer, Berlin Heidelberg New York
28. Babuska, I, Chandra J, Flaherty JE (1983) Adaptive computational methods for partial differential

equations. SIAM, Philadelphia
29. Smooke MD, Koszykowski ML (1986) SIAM J Sci Stat Comput 7:301-321
30. Glimm J, Marchesin D, McBryan O (1980) J Comput Plays 37:336-354
31. Glimm J, Marchesin D (!981) J Comput Phys 39:179-200
32. Kobos AM, VanKooten RE, Walker MA (1986) Powerful new programming model for parallel

computation. In: Rosenblum A (ed) Proceedings of school on relativity, sypersymmetry, and
strings. Plenum Press, New York London (to appear)

33. Anderson CM (1979) Eng Maths Appls 5:297-320
34. Shavitt I (1977) The method of configuration interaction. In: Schaefer III HF (ed) Methods of

electronic structure theory. Plenum Press, New York London (and references therein)

